Bioinformatic Indications That COPI- and Clathrin-Based Transport Systems Are Not Present in Chloroplasts: An Arabidopsis Model
نویسندگان
چکیده
Coated vesicle transport occurs in the cytosol of yeast, mammals and plants. It consists of three different transport systems, the COPI, COPII and clathrin coated vesicles (CCV), all of which participate in the transfer of proteins and lipids between different cytosolic compartments. There are also indications that chloroplasts have a vesicle transport system. Several putative chloroplast-localized proteins, including CPSAR1 and CPRabA5e with similarities to cytosolic COPII transport-related proteins, were detected in previous experimental and bioinformatics studies. These indications raised the hypothesis that a COPI- and/or CCV-related system may be present in chloroplasts, in addition to a COPII-related system. To test this hypothesis we bioinformatically searched for chloroplast proteins that may have similar functions to known cytosolic COPI and CCV components in the model plants Arabidopsis thaliana and Oryza sativa (subsp. japonica) (rice). We found 29 such proteins, based on domain similarity, in Arabidopsis, and 14 in rice. However, many components could not be identified and among the identified most have assigned roles that are not related to either COPI or CCV transport. We conclude that COPII is probably the only active vesicle system in chloroplasts, at least in the model plants. The evolutionary implications of the findings are discussed.
منابع مشابه
LETTER TO THE EDITOR ARF1 Localizes to the Golgi and the Trans-Golgi Network
The recruitment of coat proteins for transport vesicles (COPI-, COPII-, and clathrin-coated) is mediated by the small GTPases of the ADP-ribosylation factor (ARF) family of which there are three SAR, 12 ARF, and six ARL genes in the Arabidopsis thaliana genome (Vernoud et al., 2003). These GTPases are themselves recruited by guanidine exchange factors located at the donor compartments, which co...
متن کاملCopy Coats: COPI Mimics Clathrin and COPII
The assembly of COPI into a cage-like lattice sculpts membrane vesicles that transport cargo from the Golgi apparatus. Now, Lee and Goldberg (2010) present X-ray crystal structures of COPI suggesting that these coats combine selected features of two other archetypal coats, clathrin and COPII.
متن کاملTraffic COPs: rules of detection.
How specific cargo recognition by coat proteins is achieved and how this recognition event may regulate vesicle formation are still under investigation. In two recent papers by the Owen and Goldberg labs, the binding mode of dilysine motifs to the coatomer of the COPI coat has been analysed. Collectively, their findings suggest that the dilysine motif containing cargo proteins may stabilize coa...
متن کاملStructure of Coatomer Cage Proteins and the Relationship among COPI, COPII, and Clathrin Vesicle Coats
COPI-coated vesicles form at the Golgi apparatus from two cytosolic components, ARF G protein and coatomer, a heptameric complex that can polymerize into a cage to deform the membrane into a bud. Although coatomer shares a common evolutionary origin with COPII and clathrin vesicle coat proteins, the architectural relationship among the three cages is unclear. Strikingly, the alphabeta'-COP core...
متن کاملNovel cargo-binding site in the β and δ subunits of coatomer
Arginine (R)-based ER localization signals are sorting motifs that confer transient ER localization to unassembled subunits of multimeric membrane proteins. The COPI vesicle coat binds R-based signals but the molecular details remain unknown. Here, we use reporter membrane proteins based on the proteolipid Pmp2 fused to GFP and allele swapping of COPI subunits to map the recognition site for R-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014